

Cryptocurrency: What Is It and Why We Need to Know About It

Adam Sorini, Ph.D. (Exponent) Justin S. Wales (Crypto.com) Surya Sharma, Ph.D. (Exponent)

Tuesday, March 8, 2022

Bitcoin

- What is it?
- Peer-to-peer computer network
- Double-entry transaction ledger

Assets	
Current assets:	
Cash and cash equivalents	\$ 297,687
Short-term investments	-
Accounts receivable, net	139,861
Prepaid expenses and other assets	15,214
Total current assets	 452,762
Property, equipment and leasehold improvements, net	59,971
Operating lease right-of-use asset	14,370
Goodwill	8,607
Other assets	148,029
Total Assets	\$ 683,739

Liabilities and Stockholders' Equity	
Current liabilities:	
Accounts payable and accrued liabilities	\$ 24,504
Accrued payroll and employee benefits	103,552
Deferred revenues	19,762
Operating lease liability	5,164
Total current liabilities	152,982
Other liabilities	103,885
Operating lease liability	9,807
Total liabilities	266,674
Total stockholders' equity	417,065
	\$ 683,739

Important Bitcoin Data Structures

Blockchain

- A database made up of "blocks"
 - block = hash tree data structure
- New blocks are added via an expensive process called "mining"
- Block contain multiple "transactions"
- Unspent Transaction Output Set
 - Transactions move coins from inputs to outputs
 - Unspent Transaction Outputs are effectively what we mean when we say "coins"
 - New transactions are signed by a "private key" associated with the Unspent Transaction Output

Where are the Blocks? Where are my Coins?

- They are stored on every full node in the entire network
 - Feb 3, 2022 ~ 14690 Nodes worldwide
- Each storing the entire blockchain
- Each storing the UTXO set

Map from: https://bitnodes.io/

Modern Cryptography (~post-1970)

- Bitcoin and other cryptocurrencies are enabled by modern cryptographic tools/methods
- Asymmetric key cryptography
 - Enables (effectively) unforgeable digital "signatures"
 - Enables cryptocurrency transaction validation
- Cryptographically strong "hash" functions
 - Enables cryptocurrency decentralized proof-of-work protocol ("mining")
 - Enables (effectively) unique digital "fingerprints"

Asymmetric ("Public Key") Cryptography

- Cryptography can be used to keep messages secret (encrypt/decrypt)
- Cryptography can be use to ensure message integrity (sign/verify)
- "Asymmetric" cryptography uses *different* keys for signing and verification
 - Public key:
 - Used to verify message signatures
 - Can be shared with anyone ("public")
 - Private key:
 - Used to "sign" messages
 - Must be kept secret ("private")

Asymmetric ("Public Key") Cryptography

- In Bitcoin, messages indicate transfer of funds ("transactions")
- Asymmetric cryptography allows Bitcoin "transactions" to be broadcast globally without compromising secret information
 - Transactions are how you spend your coins
 - Addresses (public key) are broadcast to the network
 - Signatures (created via private keys) are broadcast to the network

Private keys are kept secret

- Held by individual who own bitcoin
- "Not your keys, not your coins"

Hash Functions

- Accept any size input
- Create fixed size output (e.g., 32 bytes long)
- Bitcoin uses hash functions:
 - SHA256
 - 256-bit output
 - RIPEMD160
 - 160-bit output

88504845581301700617990987233842172384686246947649053853236563658465795230810

Cryptographic Hash Functions

- The output looks random
- A "small" change in input produces a "large" change in output
- Not possible to find two different inputs that make the same output

Cryptographic Hash Functions

- The output looks random
- A "small" change in input produces a "large" change in output
- Not possible to find two different inputs that make the same output

Bitcoin (More Details)

E^xponent[®]

Bitcoin Address Example

- Bitcoin is managed by a few pieces of data
 - A bitcoin "address" (public key)
 - A bitcoin private key (very large number)
- These data can even simply be written down on paper ("paper wallet")
- Bitcoin address associated with an amount of bitcoin
 - Example paper wallet address is associated with 0.002738 Bitcoin
 - This is a UTXO stored on the global blockchain

Public key (can be displayed publicly)

 Transactions •

 Fee
 0.00007684 BTC (40.230 sat/B - 10.058 sat/WU - 191 bytes)
 +0.00273800 BTC

 Hash
 93b7555c45133f56ecdad9d81c8816629e4fc6f3fd2a19541e4675e5b...
 2016-05-04 17:19

 1BCJqZmihDjTNJK7bt86TuF3mDzSo8hEzE
 0.00281484 BTC •
 1K21Spnt8ckccxNazmXvsAFq54nrdrNfXp
 0.002273800 BTC •

Address:1K21Spnt8ckccxNazmXvsAFq54nrdrNfXp

Bitcoin Transactions

• How did this bitcoin get "into" my wallet/address in the first place?

- Answer: From an unspent output of a previous transaction

	1BCJqZmihDjTNJK7bt86TuF3mDzSo8hEzE	0.00281484 BTC 🌐 🛶	1K21Spnt8ckccxNazmXvsAFq54nrdrNfXp
W	here did that previous	transaction get th	e bitcoin from?
_	Answer: From a previous tra	ansaction	

1Aom2aWoq5Z22cHo9zCFVVrugGL7fVLTWF	2.24314150 BTC 🏶 📥	1KMuvHcTepKHLCFYQk5q3mqWESTCQpshVU	4.85108073 BTC 🌐
186katxgEQpWytKcKER3kNe6dauN2JDcAu	3.41824739 BTC 🌐 🏅	1BCJqZmihDjTNJK7bt86TuF3mDzSo8hEzE	0.00616520 BTC 🌐
		1NjLy93wRHBb4YbkmaeyTaqh9VXXiBqhmi	0.80404296 BTC 🌐

- But where did that come from?
 - Answer: from a previous transaction... and so on...
- Where did it ultimately originate?
 - Answer from a COINBASE "block reward" transaction

5277cf3790381c2cc2b071038d8c35b3b601207c92f8aec15978a5f01...

2010-08-18 07:22

15

Unspent

Transaction

Output "UTXO"

Transaction Chain

- Transactions are linked all the way back to some "COINBASE" transaction
- Example of creating and transferring 50 BTC among different users

Double Spending Problem

- Digital data is exactly and easily duplicable
 - So how can digital data be used as currency?
 - How do we stop the same unspent transaction output (UTXO) from being spent twice (or more)?
- Bitcoin uses proof-of-work to avoid double spending
 - Transactions are combined into a block and "confirmed" via mining
 - After a sufficient number of "confirmation" it is effectively impossible to reverse the transaction (e.g., to double-spend)

Blocks / Blockchain

- Block collect together transactions along with block linking information
 - Lots of transactions in a single block
- Blocks linked into a "chain" by hash pointers

Example Blocks

Block Number:	0 ("Genesis Block")	This block we wind	
Hash:	00000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f	Inis block required	
Time Stamp:	1/3/2009 10:15	about 1,099,511,627,776	
Number of Transactions:	1	hash calculations to mine	
Coinbase Data:	The Times 03/Jan/2009 Chancellor on brink of second bailout for banks	Thin to	
Reward:	50 Bitcoin		
Hash 4a5e	1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda3	2009-01-03 10:15	
COI	IBASE (Newly Generated Coins) A12P1eP5QGefi2DMPTfTL	5SLmv7DivfNa 50.0000000 BTC 🏶	

Block Number: 719922					
Hash: 000000000000000000000000000000000000					
Time Stamp:	1/22/2022 9:04			 This block required about 	
Number of Transactions: 2,057			75,557,863,725,914,323,419,136		
Coinbase Data:	bitdeer/a62us			nash calculati	
Reward:	6.25 Bitcoin				
COINBASE (Newly G	enerated Coins)	•	1Bf9sZvBHPFGVPX71WX2njhd1NXKv5y7v5	6.32295359 BTC 🌐	
		,	OP_RETURN	0.0000000 BTC	
17A16QmavnUfCW11	1DAApiJxp7ARnxN5pGX	4.85987680 BTC 🌐 📥	39kLoLUQ85mrvnXuM3cijQ2zTgUD8b1vce	0.05219771 BTC 🌻	
			3HXYQ2DFCxZzzo74RdMkjU9n88GwKXoxAD	0.05950000 BTC 🌐	
			35xuA1C8umawiRUGekdnVgoxtcjZb44GHm	0.09110034 BTC 🌐	
			3DRTkaDGyA3YwBeTTXpDgf6KHkHXaNGZWC	0.21796614 BTC 🏶	
			17A16QmavnUfCW11DAApiJxp7ARnxN5pGX	4.43811261 BTC 🌻	

- Mining is repeatedly calculating the hash value of a block over and over until the function output meets a specific criteria
 - Block header metadata is changed before each calculation so that the hash value each time is different (effectively random) value
- Mining is effectively solving a puzzle that is very hard to solve, but very easy to check
 - It is very hard to find a block with a "low enough" hash, but very easy to verify the hash
- The first miner to calculate a "low enough" hash value wins
 - "proof of work"

Mining

- Bitcoin nodes broadcast new transactions across the network
- Mining nodes collect newly broadcast transaction into "blocks"
 - Mining nodes race each other to calculate the hash of the new blocks
 - Hash is effectively a random integer between 0 and 115792089237316195423570985008687907853269984665640564039457 584007913129639935
- The entire Bitcoin network performs approximately 100 million trillion hash calculations every second!
 - All this mining takes a lot of electrical power
 - A realistic estimate puts the yearly energy consumption of the bitcoin network at more than **100 Trillion Watt Hours**
 - Cambridge Bitcoin Energy Consumption Index
 - Estimate uses price parameter: 10 cents per 1kWhr
 - https://ccaf.io/cbeci/index

- Bitcoin "miners" are rewarded with new bitcoin (COINBASE transaction) for successfully mining a "block"
 - "block reward" was 50 BTC in 2009 2012 (210000 blocks)
 - "block reward" is currently 6.25 BTC
 - "block reward" halves every 210000 block (approx. 4 years)
- The mining protocol is completely decentralized, which makes bitcoin a censorship-resistance currency
 - All miners on the network have an incentive to mine regardless of the content of transactions

Mining Example (Early 2022)

- Should you run out and start mining bitcoin?
- CPU mining?
 - Absolutely not
 - Has not been viable for many years
- GPU mining?
 - Also no
- ASIC mining?
 - Depends on BTC price, local energy costs, and other rapidly changing factors
 - Currently (Early 2022) seems like "no"

- ASIC Example
- Expected time you will have to mine to solve one block
 - 33 years
- Expected reward
 - ~\$100,000 (a few bitcoin)
- Energy cost to run the miner continuously for 33 years:
 - ~\$206,613 (California);
 - ~\$84,523 (China)

Ransomware Examples

SamSam Ransomware

- 2017 attack on school district
- Ransomware operator captured almost entire network, including backups
- Payment in Bitcoin
 - price fluctuation issues
 - facilitators
- Nowadays it is potentially sanctionable to pay

DEPARTMENT OF THE TREASURY WASHINGTON, D.C. 20220

Advisory on Potential Sanctions Risks for Facilitating Ransomware Payments¹

Date: October 1, 2020

OFFICE OF FOREIGN ASSETS CONTROL

Specially Designated Nationals and Blocked Persons List

September 30, 2020

SamSam

KHORASHADIZADEH, Ali (a.k.a. "Iranvisacart"; a.k.a. "Mastercartaria"), Iran; DOB 21 Sep 1979; POB Tehran, Iran; nationality Iran; Email Address iranvisacart@yahoo.com; alt. Email Address mastercartaria@yahoo.com; alt. Email Address alikhorashadi@yahoo.com; alt. Email Address toppglasses@gmail.com; alt. Email Address iranian_boy5@yahoo.com; Additional Sanctions Information - Subject to Secondary Sanctions; Gender Male; Digital Currency Address - XBT 149w62rY42aZBox8fGcmqNsXUzSStKeq8C;

Bitcoin Payments

Bitpaymer Ransomware

- 2018 Attack on manufacturer
 - Suspected attack vector: email with malicious .doc file.
- Bitpaymer Ransomware affected many devices
- Ransom of 20 bitcoins paid
 - Approx. \$140K at the time
 - Would be approx. \$1.2M in 2021
 - Would be approx. \$700k in early 2022
- Decryption scripts didn't work "out of the box"

Ethereum vis-a-vis Bitcoin

• Similarities:

- Both use peer-to-peer networks of "nodes," a proof-of-work Blockchain, and modern cryptographic methods
- Both are global and decentralized

• Differences

- Bitcoin focuses on monetary transactions (or speculation)
 - These are stored and executed on the blockchain/nodes via very constrained "scripts"
- Ethereum focuses on "smart contracts"
 - Also uses "scripts," but the "scripts" can be arbitrarily complex
 - Also uses a currency called "ether"—but for a different reason
- Ethereum and Bitcoin have separate networks/nodes/blockchains

Where are the contracts?

- Stored in every node on the network
- Ethereum blockchain stores the state of the "world computer" (EVM)
- Each node runs the EVM

Map from: https://www.ethernodes.org/countries

- Blockchain-based entities
 - To create a token you must create a smart contract
- Can represent:
 - Resource ownership (e.g., CPU time)
 - A digital or physical collectible
 - Many other things
- May or may not be interchangeable units
 - fungible vs. non-fungible

Fungible Tokens

ERC20 tokens

- Fungible/interchangeable tokens (currency-like)
- Implemented as a ERC20-compliant contract
- Used in ICO fundraising
 - YourCompanyNameHereCoin tokens are sold for Ethereum to raise money
- Create your own coin with npm and a few lines of Solidity code...

Non-Fungible Tokens (NFTs)

- Non-fungible tokens represent a unique item (not interchangeable)
 - ERC721 Tokens use a 256-bit identifier
- Can "represent" a physical asset
 - Or a larger-than-256-bit digital asset not intrinsic to the blockchain itself

Counterparty risk

- CryptoKitty "DNA"
 - 256-bit number
 - Stored on the blockchain
- CryptoKitty art
 - Cute picture of a cat
 - Not stored on the blockchain

Recap of Use Cases

• Ethereum

- ICO fundraising
- Cute pictures of cats, apes, etc.
- Other?!?
- Bitcoin
 - Decentralized, censorship-resistant currency
 - Ransomware
 - Other?!?

Thank you for your attention!

- Adam Sorini, Ph.D.
- Surya Sharma, Ph.D.

Adam Sorini, Ph.D.

Principal Scientist

Electrical Engineering & Computer Science

Menlo Park (650) 688-6914 asorini@exponent.com

Surya Sharma, Ph.D.

Scientist

Electrical Engineering & Computer Science

Menio Park (650) 688-6928 ssharma@exponent.com

Backup Slides

34

E^xponent[®]

Creating and Signing a Bitcoin Transaction

- A transaction has an input (TxIn) and an output (TxOut)
- Transactions are associated with public and private keys
 - Previous TxOut owner signed the transaction
 - In the example we denote the previous public/private key as "11"
- Bitcoin uses signature verification to ensure value transactions
 - Not to be confused with "confirmations" (via mining)

	Tx ₅₉
TxIn ₉₅ prevTxOut:37	TxOut ₁₃₇ value: 50
signature(11)	public key 94
Pu coi tra pre	rple box denotes mponents of the nsaction signed by tl evious owner

Creating and Signing a Bitcoin Transaction

- How do I know all this is correct?
- I go to the source (quite literally)
- Some excerpts from "bitcoin core" source code related to transactions are shown here
 - This code defines the behavior of all the nodes in the Bitcoin (BTC) network

Bitcoin core C++ header file defining transaction input "CTxIn"

Bitcoin core C++ header file defining transaction input "CTxOut"

23	□ <mark>/**</mark>
24	* A UTXO entry.
25	*
26	* Serialized format:
27	<pre>* - VARINT((coinbase ? 1 : 0) (height << 1))</pre>
28	* - the non-spent CTxOut (via TxOutCompression)
29	*/
30	🖹 class Coin
31	{
32	public:
33	<pre>//! unspent transaction output</pre>
34	CTxOut out;
25	

Bitcoin core C++ header file defining "Coin"

Bitcoin core C++ header file defining "CTransaction"

Technical References

• Bitcoin

- "Mastering Bitcoin" by A. M. Antonopoulos (2014, 2017)
- "Bitcoin and Cryptocurrency Technologies" by A. Narayanan et al. (2016)
- "Bitcoin: A Peer-to-Peer Electronic Cash System" by S. Nakamoto (2009)
 - https://bitcoin.org/bitcoin.pdf
- Core Implementation: <u>https://github.com/bitcoin/bitcoin</u> (2009-Present)
- Ethereum
 - "Mastering Ethereum" by A. M. Antonopoulous G. Wood (2018)
 - "Ethereum Whitepaper" by V. Buterin (2013)
 - https://ethereum.org/en/whitepaper/
 - "Ethereum Yellow paper" by G. Wood
 - https://ethereum.github.io/yellowpaper/paper.pdf
- Cryptography
 - "Introduction to Modern Cryptography" (3rd Edition) by J. Katz and Y. Lindell (2021)

